On the hyper order of solutions of a class of higher order linear differential equations
نویسنده
چکیده
In this paper, we investigate the order and the hyper order of entire solutions of the higher order linear differential equation f +Ak−1 (z) e k−1f +...+A1 (z) e 1f ′ +A0 (z) e 0f = 0 (k ≥ 2) , where Pj (z) (j = 0, ..., k − 1) are nonconstant polynomials such that degPj = n (j = 0, ..., k − 1) and Aj (z) ( ≡ 0) (j = 0, ..., k − 1) are entire functions with ρ (Aj) < n (j = 0, ..., k − 1). Under some conditions, we prove that every solution f (z) ≡ 0 of the above equation is of infinite order and ρ2 (f) = n.
منابع مشابه
ON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملGeneralized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کامل